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Outcome for children with childhood
acute lymphoblastic leukemia (ALL) who
relapse is poor. To gain insight into the
mechanisms of relapse, we analyzed
gene-expression profiles in 35 matched
diagnosis/relapse pairs as well as 60 uni-
formly treated children at relapse using
the Affymetrix platform. Matched-pair
analyses revealed significant differences
in the expression of genes involved in
cell-cycle regulation, DNA repair, and apo-
ptosis between diagnostic and early-

relapse samples. Many of these pathways
have been implicated in tumorigenesis
previously and are attractive targets for
intervention strategies. In contrast, no
common pattern of changes was ob-
served among late-relapse pairs. Early-
relapse samples were more likely to be
similar to their respective diagnostic
sample while we noted greater diver-
gence in gene-expression patterns among
late-relapse pairs. Comparison of expres-
sion profiles of early- versus late-relapse

samples indicated that early-relapse
clones were characterized by overexpres-
sion of biologic pathways associated with
cell-cycle regulation. These results sug-
gest that early-relapse results from the
emergence of a related clone, character-
ized by the up-regulation of genes mediat-
ing cell proliferation. In contrast, late re-
lapse appears to be mediated by diverse
pathways. (Blood. 2006;108:711-717)
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Introduction

In spite of the significant progress in the improvement of cure rates
for childhood acute lymphoblastic leukemia (ALL), 20% of
children will suffer a recurrence, making relapsed ALL the fifth
most common childhood cancer. Unfortunately, retrieval therapy is
inadequate in most cases, and most of these children succumb to
their disease. The failure of intensive chemotherapy to cure most
children, as well as the toxicity of these approaches, mandates a
search for new treatment approaches.

Numerous clinical and biologic factors are helpful in predicting
outcome at initial diagnosis, but few prognosticators exist at
relapse. The duration of first remission is the most important
prognostic variable. Namely, patients relapsing early, while on
therapy, or shortly after completing treatment (� 36 months from
initial diagnosis), have long-term outcomes far worse than those
with later relapses (� 36 months from diagnosis). Only 10% of
patients with early bone marrow relapse are long-term survivors.1-3

In addition, dismal outcomes have been observed at relapse in
patients with a T-cell phenotype.4

Recent advances in microarray technology have made it pos-
sible to obtain a molecular portrait of cancer.5,6 The goals of this
study were to identify pathways that potentially account for drug
resistance at relapse and provide an explanation for the observed
differences in outcome among patients who relapse early versus

late following diagnosis, to provide insight into the origin of the
relapsed clone, and to discover pathways that are attractive targets
for future therapy. To accomplish these goals we examined
gene-expression profiles in 2 cohorts of samples, a matched-pair
cohort of diagnosis/relapse samples from the same patient, and a
large group of relapse samples from children enrolled in a
contemporary Children’s Oncology Group (COG) protocol for
relapsed ALL, AALL01P2.

Patients, methods, and materials

Patient samples

Ficoll-enriched, cryopreserved bone marrow samples (peripheral blood
with � 80% circulating blasts from a small subset) were obtained from 35
patients where matched samples from initial diagnosis and first marrow
relapse were available. More than half (23) of the patients had early relapses
(� 36 months from initial diagnosis), while 12 had late relapses (� 36
months from diagnosis). The majority of patients had a B-precursor
phenotype (n � 32); 3 patients had T-cell ALL (T-ALL; Table 1). These
patients were treated on contemporary cooperative group protocols from
1999 to 2004. Patient characteristics are detailed in Table S2 (available on
the Blood website; click on the Supplemental Materials link at the top of the
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online article). An independent set of 29 marrow samples acquired at the
time of initial diagnosis (balanced for National Cancer Institute [NCI]
standard and high risk) and 19 samples acquired at relapse were used for
verification of target gene expression by quantitative real-time polymerase
chain reaction (PCR).

A cohort of 60 patients at relapse (37 early, 23 late) enrolled in the
current Children’s Oncology Group protocol, AALL01P2, for patients with
first bone marrow relapse were obtained. The majority of patients had a
B-precursor immunophenotype (n � 54). Six patients had T-ALL. Treat-
ment for all these patients consisted of 3 35-day blocks of chemotherapy,
detailed in Table S1. All patient samples used in these analyses were
acquired from the Children’s Oncology Group cell bank, and patients (or
parents) had provided informed consent for use of these samples for
research studies.

RNA extraction, amplification, and DNA arrays

RNA was isolated by Qiagen RNEasy Mini kits (Valencia, CA) and quality
was verified by an Agilent 2100 Bioanalyzer (Agilent, Palo Alto, CA). Total
RNA (1 �g) was used as a template in a double amplification protocol using
RiboAmp RNA amplification kits (Arcturus, Mountain View, CA) accord-
ing to the manufacturer’s recommendation. In vitro transcription was
completed with biotinylated UTP and CTP for labeling using the ENZO
BioArray HighYield RNA Transcript Labeling kit (Enzo Diagnostics,
Farmingdale, NJ), with a representative yield of 40 to 50 �g. A portion of
the labeled cRNA (20 �g) was fragmented and hybridized to Affymetrix
U133A microarrays according to Affymetrix protocols (Santa Clara, CA).
These arrays contain 22 283 probe sets, representing approximately 13 000
genes. After hybridization, DNA arrays were stained with streptavidin-
phycoerythrin and scanned using a GeneArray scanner (Agilent).

Data analysis

The data discussed in this publication have been deposited in the National
Center for Biotechnology Information (NCBI) Gene Expression Omnibus
(GEO; http://www.ncbi.nlm.nih.gov/geo) and are accessible through GEO
Series accession number GSE3912. Image and expression data files were
generated with Affymetrix MAS 5.0. The average percentage of probesets
with “present calls” (qualitative detection of transcripts) was 33.6%,
indicating that the array hybridizations were of good quality. Probe-level
analysis including intensity-dependent normalization was performed using
the method of robust multiarray analysis (RMA) described by Irizarry et al.7

The analytic software package Genetraffic (Iobion Informatics, La Jolla,
CA) was used for RMA. Clustering and visualization were done using
Cluster and TreeView software (Eisen Laboratory, Stanford University,
Stanford, CA). For each probe set, the arithmetic mean of the expression
values of all the hybridization was used to calculate the baseline expression.
The probe sets that were flagged as absent in more than 70% of the samples
were discarded as a means to filter noise in the data. Unsupervised analysis
by hierarchic clustering was performed after application of the variance
filter mentioned.

VxInsight, a higher dimensional unsupervised method, was used
for discovering inherent relationships between the samples8-11 (http://
hsc .unm.edu/crtc /WillmanResearch/Pages /UNMHSC_HPC_SNL_
Methodology.htm).

Multiple supervised analytic methods were used to select genes that
were differentially expressed between selected cohorts. To identify differen-

tially expressed genes between paired samples at diagnosis and relapse, a
paired t test was performed followed by adjustment of the P values for
multiple simultaneous inferences by 2 methods. We calculated a false
discovery rate (FDR) for each gene according to the method proposed by
Benjamini and Hochberg.12 Secondly an adjusted P value was calculated
using Hochberg’s step-up Bonferroni method,13 which is denoted by HOC P
in Table S5B. All the significant genes were sorted on the overall ranks,
which were determined by the t-test statistic. Significance analysis of
microarrays (SAM)14 was used to select genes differentially expressed
between early and late relapse cohorts using a symmetric threshold that
better selects for both “positive” and “negative” genes. In order to find
significant genes that were associated with the time to relapse we used
linear regression to fit the time to relapse data (in log scale), with 1 gene
being a predictor. The t test for testing the significance of coefficient was
estimated and the P value was used to measure the significance of the gene.
The 2 methods mentioned were used to adjust the P values. Tables listing
the significant genes for all the analyses along with FDR and P values are
available in Tables S3 and S5.

Functional grouping of significant genes

Genes whose expressions were significantly different in the early and late
relapse cohort with a FDR less than 5% were selected for classification into
functional groups using the Gene Ontology tool through the Affymetrix
Netaffyx application (www.affymetrix.com/analysis/netaffx).

PCR

The array expression patterns of several target genes (BIRC5, PTTG1,
TOP2A, CCNB1, SCGF, and BCL7A) were subsequently verified by
real-time quantitative PCR on an independent cohort of patients. Relative
transcript levels were determined by a comparative threshold cycles for
amplification (CT) method with normalization to �2-microglobulin (�CT).
The �CT value is inversely proportional to the expression of the particular
gene. All reactions were run in triplicate, and the integrity of product was
checked by a melting curve analysis at the end of the amplification
procedure. Primer sequences are as follows: �2-microglobulin: ATGTGTCT-
GGGTTTCATCCATCC (sense), AGTCACATGGTTCACACGGCA (anti-
sense); BIRC5: CATCTCTACATTCAAGAACTGG (sense), GGTTAAT-
TCTTCAAACTGCTTC (antisense); PTTG1: TTTCTGCCAAAAAG-
ATGACT (sense), GAGACTGCAACAGATTGGAT (antisense); TOP2A:
CTGATTCAGAGGGGATATGA (sense), CCACAAATCTGATGGACTCT
(antisense); CCNB1: TGACTTTGCTTTTGTGACTG (sense), GTGTCCAT-
TCACCATTATCC (antisense); SCGF: TGAGGACATCGTCACTTACA
(sense), GAGAGCAGGAAGCACTTGT (antisense); and BCL7A: GACAT-
GCATGACGATAACAG, CTGCCGATCTACTTTCTCTG (antisense).

Nested reverse transcriptase–PCR reactions were completed on samples
from 35 patients (pairs) to detect the TEL/AML1 fusion transcript as
previously described.15

Results

Changes in biologic pathways at relapse

Matched-diagnosis and relapse samples from the same patient offer
the best opportunity to study underlying mechanisms leading to
emergence of resistant clones. An initial unsupervised hierarchic
clustering of 70 samples (35 patients at diagnosis and at relapse)
using the Pearson correlation showed that in 14 of 35 cases the
diagnosis and relapse sample from the same patient clustered next
to one another (Figure 1A). For example, the gene-expression
profile of the diagnosis and relapse samples were very similar for
the 3 T-cell (no. 4, no. 11, and no. 35), and infant (no. 16) cases.
Figure 1B demonstrates the Pearson correlation coefficient (CC) of
each of the pairs of patient samples arranged in order of time to
relapse; a higher correlation coefficient indicates that the diagnosis
and relapse sample are more alike. It is notable that there is a

Table 1. Cohorts of patients used for the various analyses

No. matched
pairs

No. samples at
relapse

Early relapse

B-precursor 21 32

T-cell 2 5

Late relapse

B-precursor 11 22

T-cell 1 1

Total 35 60
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definite trend (see regression line; P � .002) toward a lower
correlation coefficient among the later relapse pairs, indicating
more dissimilarity.

Probe sets (120 total; 48 up-regulated at diagnosis, 78 up-
regulated at relapse) were identified using the paired t test to be
significantly different at relapse compared to initial diagnosis in the
B-precursor cases (FDR � 10%; Figure 2A). Multiple genes
involved in cell-cycle regulation, protein biosynthesis, DNA repli-
cation and repair, and antiapoptosis were differentially expressed at
relapse. The top 20 genes are shown in Table 2. A similar analysis
was performed after including the 3 patients with T-cell ALL.
Using an identical cutoff of FDR less than 10%, 78% of the genes
were common to both analyses. Given differences in the clinical
outcomes of early versus late relapse, early- and late-relapse pairs
were analyzed separately. A number of probe sets (73 sets;
FDR � 10%) were differentially expressed between the initial
diagnosis/early relapse matched sample pairs (n � 23; Table S3C).
Many (52%) of these genes were identified in the matched pair
analysis of all 35 pairs. In contrast, we were unable to identify any
genes with significant differences in expression among the initial
diagnosis/late-relapse matched pairs (n � 12).

We next validated the expression of a subset of differentially
regulated genes that were identified from the matched-pair analyses

on an independent sample set which consisted of unmatched
marrow samples at initial diagnosis (n � 29) and relapse (n � 19)
(Figure 2B) by quantitative real-time PCR. These 19 relapse
samples were randomly selected from the cohort of 60 patients
treated at relapse in COG AALL01P2 but did not include the
relapse samples from the 35 pairs. We selected those genes
implicated previously in transformation as well as those that might
be suitable targets for future therapeutic modulation, such as
BIRC5,16 PTTG1,17,18 TOP2A,19 CCNB1,20 SCGF,21 and BCL7A22

for validation. Although some of these genes were not included in
the top 20 gene list, all genes were significantly differentially
expressed (P � .005; see gene list in Table S3B). PTTG1, BIRC5,
TOP2A, and CCNB1 transcript levels were again shown to be
significantly up-regulated at relapse. The P value for SCGF was
.057, while the expression of BCL7A (down-regulated at relapse in
the paired analysis) did not reach statistical significance. We are
unable to discern whether these discrepancies are due to the fact
that the independent samples were unmatched.

Intrinsic biologic classes at relapse

These results indicate that a common pattern of gene expression
can be identified in blasts at relapse, especially among samples

Figure 1. Unsupervised analysis of paired diagnostic and relapse samples. (A) Samples (70; 35 patients at diagnosis and relapse) were clustered by hierarchic clustering
using the Pearson correlation coefficient as the similarity measure. The diagnostic and relapse samples from multiple patients clustered closely together. D indicates sample
from initial diagnosis; R, sample from relapse. (B) The Pearson correlation coefficient (CC) of the paired sample for each patient (32 pre-B) is represented as a gray circle; the
higher the CC, the more similar the paired samples. Patients have been arranged from left to right according to the length of time to relapse. There is a clear trend toward
decreasing CC as the time to relapse increases, as indicated by the regression line (P value of F test � .002).

Figure 2. Genes differentially expressed at diagnosis
and relapse in B-precursor ALL. (A) Heatmap of top
126 probe sets (48 high at diagnosis, 78 high at relapse;
FDR � 10%). (B) Quantitative real time–PCR (qRT-PCR)
validation of selected targets on independent samples
(29 initial diagnosis, 19 relapse). The y-axis represents
normalized �CT values (CT of gene of interest � CT of
housekeeping gene). A high �CT signifies low expres-
sion, and vice versa. CT indicates threshold cycles for
amplification. *SCGF was not expressed in 2 of the
diagnosis samples; thus, an arbitrary CT value of 40 was
used. Median expression is indicated by the horizontal
bars.
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from patients who relapse early in therapy. To determine further the
heterogeneity of blasts at relapse we performed an unsupervised
analysis of gene-expression profiles of 60 relapse marrow samples
(54 B-precursor ALL and 6 T-ALL) from patients enrolled in COG
AALL01P2, a recently completed protocol for children with
relapsed ALL. This cohort included 17 relapse samples from the
previous cohort of 35 paired samples. Patient samples were
clustered into 3 distinct groups: UL (upper left), LL (lower left),
and MR (middle right) (Figure 3; Table 3). The MR group was
dominated by early-relapse cases compared with the other 2 groups
(mean time to relapse, 24.1 months for MR vs 40.9 months [UL]

and 43.8 months [LL]). Five of 6 T-ALL cases, all of whom
relapsed early, were included in the MR group. In contrast, the UL
and LL groups had an equal distribution of early and late relapse
sample and average times to relapse. The genes discriminating
these 3 groups are included in Table S4.

Gene-expression patterns of early versus late relapse

Because the timing of relapse is the most important prognostic
factor for the success of retrieval therapy, we identified the genes
that best distinguished early (� 36 months from diagnosis) and late
(� 36 months from diagnosis) B-precursor marrow relapse (n � 54).
Using a cutoff of FDR of 2.5% or less, 115 significant genes (79
high in early relapse, 36 high in late relapse) were identified (Figure
4A). The procedure was reapplied to the entire cohort (n � 60; 6
T-cell samples included), and these data are included in Figure S1.
The top 100 genes from both lists (eg, B-precursor alone vs
B-precursor and T-ALL) were compared, and 74% of the genes
were common. Most clinical protocols assign therapy based on the
timing of relapse and use 36 months from initial diagnosis as the
cut-off for definition. However, since time to relapse is a continu-
ous variable, we also used a linear regression model to fit the time
to relapse data, and 118 genes were identified (FDR � 1.5%, 96
positive and 22 negative genes; Figure 4B). Both analyses show
that early-relapse samples were characterized by an up-regulation
of a number of genes that may confer proliferative and survival
advantages to the cell (Figure 4C). Specifically, genes involved in
biosynthesis and metabolism, DNA replication/repair, and inhibi-
tion of apoptosis were among those groups up-regulated in early

Figure 3. VxInsight analysis for 60 patients at relapse. (A) The VxInsight program
located and positioned clusters and used a mountainous terrain metaphor to display
the results. Mountains are shown over the clusters such that the height of each
mountain represents the number of elements in that cluster. VxInsight defined 3
clusters from the entire cohort of 60 patients. (B) A detailed view of the middle-right
cluster shows that all the early-relapse T-cell patients are closely clustered together.
Blue lines indicate the strongest similarity links.

Table 2. List of the top 20 genes identified in a matched-pair analysis differentially expressed between initial diagnosis and relapse
(32 precursor B-ALL)

Rank
Time of high
expression FDR, % P

Affymetrix
ID Symbol Gene title Reported function

1 Diagnosis 0.66 .000001 204642_at EDG1 Endothelial differentiation, sphingolipid

G-protein-coupled receptor, 1

Cell adhesion, signal

transduction

2 Diagnosis 0.66 .000002 203795_s_at BCL7A B-cell CLL/lymphoma 7A Putative tumor suppressor

3 Relapse 0.97 .000003 203554_x_at PTTG1 Pituitary tumor-transforming 1 DNA replication and repair;

cell cycle

4 Relapse 2.11 .00001 200834_s_at RPS21 Ribosomal protein S21 Protein biosynthesis

5 Relapse 2.11 .000016 200763_s_at RPLP1 Ribosomal protein, large, P1 Protein biosynthesis

6 Relapse 2.11 .000017 213166_x_at FLJ14346 Hypothetical protein FLJ14346 Unknown

7 Relapse 2.11 .000019 201757_at NDUFS5 NADH-coenzyme Q reductase Mitochondrial electron

transport

8 Relapse 2.11 .000021 200980_s_at PDHA1 Pyruvate dehydrogenase (lipoamide)

alpha 1

Glycolysis; protein

polyubiquitination

9 Diagnosis 2.11 .000023 203796_s_at BCL7A B-cell CLL/lymphoma 7A Putative tumor suppressor

10 Relapse 2.11 .000026 203989_x_at F2R Coagulation factor II (thrombin)

receptor

Cell-cycle regulation,

apoptosis

11 Relapse 2.11 .000029 200061_s_at RPS24 Ribosomal protein S24 Protein biosynthesis

12 Relapse 2.11 .000029 201001_s_at UBE2V1 Ubiquitin-conjugating enzyme E2

variant 1

Cell-cycle progression; DNA

repair

13 Relapse 2.11 .000031 212834_at DDX52 DEAD (Asp-Glu-Ala-Asp) box

polypeptide 52

Nucleic acid binding,

helicase activity

14 Diagnosis 2.12 .000034 213875_x_at C6orf62 Chromosome 6 open reading frame 62 Unknown

15 Diagnosis 2.51 .000044 208892_s_at DUSP6 Dual-specificity phosphatase 6 Cell-cycle progression; DNA

repair

16 Diagnosis 2.51 .000048 206864_s_at HRK Harakiri, BCL2 interacting protein

(contains only BH3 domain)

Induction of apoptosis

17 Relapse 2.51 .000049 217491_x_at COX7C Cytochrome c oxidase subunit VIIc Generation of precursor

metabolites and energy

18 Relapse 2.51 .000052 201002_s_at UBE2V1 Ubiquitin-conjugating enzyme E2

variant

Cell-cycle progression; DNA

repair

19 Relapse 2.51 .000054 202279_at C14orf2 Chromosome 14 open reading frame 2 Unknown

20 Diagnosis 2.51 .000057 49485_at PRDM4 PR domain containing 4 Transcription regulation
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versus late relapse. Thus, gene expression analysis on both cohorts
of samples (diagnosis/relapse pairs and samples at relapse) shows
that early relapse is characterized by the emergence of a highly
proliferative clone that is distinct from relapsed clones that are
detected at later time points from initial diagnosis.

Discussion

Recurrent ALL remains a major challenge in spite of the dramati-
cally improved survival for newly diagnosed patients.1,4 Further
intensification of chemotherapy is unlikely to cure additional
patients, and understanding the cellular mechanisms that lead to
resistance will result in better therapy and prevention strategies.
While many previous studies have examined biologic differences
between leukemic blasts at diagnosis and relapse, the current study
has important advantages over previous reports. Matched pairs at
diagnosis and relapse provide the best opportunity to study
emergence of resistance, as each patient acts as his/her own control.
Common changes that contribute to drug resistance can thus be
uncovered. In previous studies, unlinked cohorts of relapse and
new diagnosis samples were examined. An inherent problem with
such an approach is the unbalanced assortment of favorable and
unfavorable genetic subtypes such that differences noted between
the 2 groups may be linked to these differences in the underlying
disease subtypes rather than to true resistance pathways. To verify
differences in biologic pathways at relapse and to distinguish
further differences in relapse mechanisms between patients who
relapse early versus those who suffer a recurrence late after initial
diagnosis, we also examined a large number of samples from

children enrolled in an ongoing study for relapsed ALL. These
children had received therapy from current intensive protocols at
the time of their initial diagnosis.

Many of the genes that we identified by comparing matched
diagnosis and relapse samples have been implicated in malignant
transformation and/or drug resistance previously. For example,
survivin (BIRC5), which is a member of the inhibitor of apoptosis
(IAP) family regulating cell division and inhibiting caspase func-
tion,16 was up-regulated at relapse. High expression of survivin has
been shown to be a marker of poor prognosis, and targeting
survivin by antisense oligonucleotides and other methods has been
shown to induce apoptosis in cell lines and suppress tumor growth
in xenograft models.23 In another study, survivin and cyclinB1
(CCNB1), another one of the genes that is up-regulated at relapse,
were included in a panel of a 16-gene recurrence score that could
predict recurrence in breast cancer.24

Genes involved in cell proliferation, protein biosynthesis,
carbohydrate metabolism, and DNA replication/repair were among
those highly expressed in relapsed versus newly diagnosed blasts.
Topoisomerase II alpha (TOP2A) encodes an enzyme that controls
and alters the topologic state of DNA during transcription. It is the
target for the topoisomerase II inhibitor chemotherapeutic agents
and TOP2A expression has been shown to be associated with
increased proliferation and poor outcome in a variety of tumors.19,25

Pituitary tumor transforming gene 1, or securin, encodes a
p53-interacting protein. The interaction prevents the binding of p53
to DNA inhibiting its transcriptional activity. Securin also inhibits
the ability of p53 to induce cell death.17 Thus, the oncogenic action
of increased expression of securin may make it an attractive target
for therapeutic intervention.

Table 3. Characteristics of the patients included in the 3 clusters

Cluster
No. early/no.

late (total)
Average time
to relapse, mo

No. failures after
block 1 therapy

Average MRD
(M1 patients), % Phenotype Additional information

Upper left 9/8 (17) 40.9 1 1 17 precursor B —

Middle right 17/3 (20) 24.1 7 1.80 15 precursor B; 5 T-ALL 1 infant

Lower left 11/12 (23) 43.8 3 0.63 22 precursor B; 1 T-ALL 2 infants; 1 Ph� infant; 1 Ph�

Most of the patients in the middle right group are early relapses.
— indicates not applicable.

Figure 4. Genes differentially expressed between early and late relapse in patients (n � 54) with precursor B-ALL. (A) Patients were classified into 2 groups—early
relapse (� 36 months from diagnosis) and late relapse (� 36 months)—using binary classification: 114 probe sets were chosen by SAM, with an FDR of 2.5% or less. (B). A
linear regression model of survival analysis was used to show the possible association of the gene expression values with time to relapse. A number of probe sets (118) were
chosen, with an FDR of 1.5% or less. (C) Functional categorization: 263 probe sets that were differentially expressed between early and late relapse with an FDR less than 5%
were grouped according to function using the GeneOntology Biological Process classification. Yellow bars represent the number of genes relatively overexpressed, and blue
bars represent genes relatively underexpressed at relapse.
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A multitude of growth factors orchestrate stem-cell self-renewal
and differentiation. Stem-cell growth factor (SCGF) is a member of
the C-type lectin superfamily and is a novel human growth factor
that supports growth of primitive hematopoietic progenitor cells.21,26

SCGF was another gene which was significantly overexpressed at
relapse. Some of the genes down-regulated at relapse compared
with initial diagnosis included proapoptotic genes (Harakiri),
antiproliferative genes (BTG1 and BTG2) and a putative tumor
suppressor (BCL7A). However, using our independent group of
samples we could not verify differential expression of BCL7A.
Whether this disparity is the result of true false-positive associa-
tions using array technology or because our independent sample set
was not matched remains to be determined. Like other microarray
databases, further validation of the gene sets described in this study
will be needed before investigators focus on individual pathways to
understand better resistance mechanisms and importantly before
therapeutic strategies are developed.

In contrast to previous reports we did not observe increased
expression of cyclin D127 and dihydrofolate reductase (DHFR),28 or
decreased expression of the reduced folate carrier (RFC),29 BAX,30

and p16INK4A at relapse.31,32 Beesley et al33 recently reported a
transcriptional profile of relapsed ALL in 15 matched pairs (11
B-precursor and 4 T-ALL patients). GRP58, the gene that was
ranked second in their analysis, was also significant in our pairs
(P � .034). We were unable to identify other genes from their top
20 to be statistically significant in our analysis. The reason for the
poor concordance between the 2 studies may be due to the small
number of patients and the fact that their pairs were generated from
samples from children diagnosed as far back as 1984, an era when
children were treated with significantly less therapy. In addition,
the most significant changes we identified at relapse were noted in
patients who relapsed early, and their distribution of cases was not
reported. Our pairwise analysis was designed to identify common
changes that contribute to drug resistance regardless of biologic
subgroup. Although our cohort included a representative mix of
cytogenetic subgroups, the number of individual samples in each
category is too small to determine if there are additional changes
specific to certain subgroups.

The most notable finding of our analysis was that relapse blasts
express many genes involved in cell proliferation, a result that is in
agreement with previous reports.33,34 Most of the targets that were
identified in a pairwise analysis of all 35 patients were contributed
by the early-relapse pairs (subgroup analysis), but were not
identified in the late-relapse pairs. The distinct differences in early
versus late relapse were also underscored by our direct comparison

of early- versus late-relapse samples from patients enrolled in COG
AALL01P2, where early relapse samples again showed much
greater representation of genes involved in proliferation, cell-cycle
control, and cellular metabolism. Unsupervised analysis of matched
pairs showed that a subset of relapsed samples had a gene-
expression profile that was significantly distinct from their respec-
tive initial diagnostic sample; this was generally true in the
late-relapse group. Although these analyses are limited by the
smaller number of samples in the late-relapse cohort, these findings
are suggestive of a model whereby late relapse is due to the
acquisition of diverse secondary events that might occur in a
distinct subpopulation such as a leukemic stem cell. Direct
evidence for this model has come from the study of relapsed
TEL-AML1� ALL samples,35 where the analysis of deletions at the
nontranslocated TEL allele shows that the relapsed clone is related,
but distinct from the clone at initial diagnosis. It has been
hypothesized that relapse in essence represents a de novo ALL
originating from a preleukemic stem cell. Our data suggest that this
general model may be operative in non–TEL-AML1 subtypes of
late ALL relapse as well. In contrast, early-relapse mechanisms
appear to be more homogeneous and are suggestive of the selection
of a resistant, more proliferative clone. While blasts in cell cycle
might be more sensitive to chemotherapeutic agents that target
steps in DNA metabolism and cell division, the overexpression of
DNA repair (eg, PTTG1, RAD51, and POLE2) and antiapoptotic
genes (eg, BIRC5, AATF, API5, and AVEN) might overcome the
alterations induced by treatment. The common gene expression
signature among early-relapse patients provides a list of targets for
novel therapeutic and preventive strategies. In contrast, the diverse
nature of later relapse may be more challenging to address using a
common strategy.

In summary, we have identified potential genes and pathways at
relapse that may play a direct role in drug resistance in childhood
ALL and offer insight into the clinical differences that are observed
among patients based on the timing of disease recurrence. Our
findings support a model whereby the mechanisms of relapse differ
for early compared with late disease recurrence. Further preclinical
validation of the functional role of some of these genes will
contribute to rational efforts to treat and prevent tumor recurrence.
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